
Trends
Behavioral studies over more than two
decades have shown that young
infants have a rich understanding of
the physics of the world, with general
expectations about the dynamics of
objects and substances. However, this
knowledge is also incomplete and
inaccurate, and develops importantly
over the first years of life.

Recent computational models can
capture aspects of physical scene
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We explore the hypothesis that many intuitive physical inferences are based on
a mental physics engine that is analogous in many ways to the machine physics
engines used in building interactive video games. We describe the key features
of game physics engines and their parallels in human mental representation,
focusing especially on the intuitive physics of young infants where the hypoth-
esis helps to unify many classic and otherwise puzzling phenomena, and may
provide the basis for a computational account of how the physical knowledge
of infants develops. This hypothesis also explains several ‘physics illusions’,
and helps to inform the development of artificial intelligence (AI) systems with
more human-like common sense.
understanding by performing probabil-
istic inferences over representations
similar to those used in video game
physics engines, which enable players
to interact realistically with objects in
virtual physical scenes.

Game engines rely on numerous short-
cuts and hacks to efficiently simulate
approximations to Newtonian
mechanics for complex scenes in
real-time. Mental physics engines, sol-
ving a similar problem, may have con-
verged on similar approximations and
concepts.

Physics-engine representations can
help to explain the patterns of success
and failure in the intuitive physics of
infants, as well as illusions and misper-
ceptions in adults.

Probabilistic simulations in game phy-
sics engines are increasingly being
used in the design of AI systems to
enable common-sense reasoning
about the physical world.
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Simulating Physics in a Mind and a Computer
Human perception cares not only about ‘what is where’ but also about ‘where to’, ‘how’, and
‘why’. We implicitly but continually reason about the stability, strength, friction, and weight of
objects around us, to predict how things might move, sag, push, and tumble as we act on
them. As naive observers, people may be most aware of the cases where our predictions are
wrong, but for cognitive scientists seeking to understand how humans interact so flexibly with
everyday objects and with each other, or for AI researchers who want to build human-like
common sense in machines, what is most striking is how right we are. Even young children
have a remarkable capacity for intuitive physics, extending even to objects they are encoun-
tering for the first time, and indeed we are still far from having robots or other AI systems with the
physical scene understanding abilities of a human baby, let alone an adult.

Our goal in this paper is to suggest one route for closing this gap, both to gain deeper insight
into the core intuitive physics that arises in young children and develops into adulthood, and
to guide efforts to build machines that learn to reason about the physical world as flexibly and
robustly as people do. We call this hypothesis the ‘game engine in your head’: evolution
could equip infants with something like the high-level architecture used to interactively
simulate the physics of virtual worlds in modern video games (Figure 1), and learning physics
would then consist of ‘programming’ this architecture to better capture the experiences of
infants in observing and interacting with objects and other physical entities. Compared to
other approaches to physical simulation, game physics engines are optimized for
efficiency on a limited subset of everyday physics, and for producing results that look
natural regardless of their quantitative correspondence to physical reality. Integrated
with tools from probabilistic inference and machine learning, game physics-style represen-
tations can explain how people are able to make a wide range of intuitive physical
judgments quickly and robustly (Box 1), and acquire many types of physical knowledge
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Figure 1. How Game Engines View the World. Everyday perception is not only about the categorization of objects,
but also about their dynamic properties and relations. (A) Simple dynamic image, billiard balls colliding in a constrained
environment. (B) Physics-engine view of the billiard scene, parsing the world into objects with physical properties,
velocity vectors, and events such as collisions. (C) Prediction in a daily scene. (D, top) Physics-engine representation
includes static floor (orange), simplified bounding bodies, force vectors (red arrow), sleeping and waking objects (dark
and light green). (D, bottom) Simulating forward from initial conditions. The sleeping bodies wake up as the collision
moves through the tower.
from experience – including not only the physics of the world we actually live in but also
possible worlds that humans could experience.

In the following we introduce the key features of game physics engines that make them
compelling models for the representations of intuitive physics, with an emphasis on how
these features correspond to important distinctions and developmental milestones that
have been discovered in the earliest emerging core intuitive physics of infants (Figure 2).
These infant findings are fascinating but often puzzling, lacking a unifying explanation.
Strikingly, game physics engines predict many of these results, and perhaps can provide the
missing integrative theory for infant physics, while also being consistent with the adult
cognitive state and plausible learning mechanisms (Box 2). We also show how physics-
engine concepts can make sense of several types of ‘physics illusions’ that people are
prone to as byproducts of the short cuts they make for efficient simulation, and discuss how
they are also being used and extended by AI researchers to build more human-like physical
reasoning and planning in machines. Finally, we briefly discuss ways in which our intuitive
physics may differ from or go beyond what game engines naturally represent (Box 3). We do
not mean to suggest that all the inner workings of physics engines will have counterparts in
the mind, or that our understanding of all aspects of the physical world depends on a mental
physics engine. The parallels suggest, however, that the mental physics-engine hypothesis
provides insights into diverse aspects of human physical reasoning and especially its
developmental origins.
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Box 1. Physical Scene Understanding

The mental physics-engine hypothesis proposes that people reason about physical scenes in the following way. First,
people reconstruct the visible scene internally, with some uncertainty over the perceptual and physical properties of the
objects (e.g., position, velocity, mass, and friction). This reconstruction is similar to that of a software engineer who looks
at a tower of blocks on a table and recreates an approximation of the objects and dynamics on the physics engine of her
computer. People can mentally interact with this scene and simulate its future state repeatedly and with noisy Newtonian
dynamics. Such a mental simulation is similar to a set of repeated computer simulations of a tower of blocks by a
software engineer, who can predict how a tower of blocks will fall if it is bumped into, using a computer-simulated tower
(Figure I). People can also compare the predictions of the simulation with observations, and adjust their beliefs
accordingly. Think of an engineer who wrongly predicts that a tower of blocks will collapse when jostled because
her computer simulation predicted a collapse, and who readjusts the physical parameters (e.g., the mass of the blocks)
of her simulation accordingly (see also Figure 4 in main text). Mental physics engines support a variety of predictions
across different tasks and types of reasoning, including predicting how a scene will unfold over time [6,8], interacting
with a dynamic scene [74], reasoning about underlying physical properties [10,11,66], causal judgments [7], and
quantitative infant physical reasoning [9].
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Figure I. Predicting Stability. A mental physics-engine model versus human judgment averages in judging the
stability of towers. (A) A physics engine simulates the dynamics of inferred towers. (B) Each point in the correlation
graphs represents people's stability judgments for one tower (with SEM), and the three colored circles correspond to the
three towers shown on the left. Ground-truth physics (no uncertainty) does not correspond to human judgments, but a
noisy physics simulation does. Adapted from [6].
Major Physics-Engine Concepts
Our proposal can be seen as one computational instantiation of the classic view that intuitive
physics is enabled by ‘runnable mental models’: mental simulators that to a certain degree
capture the causal mechanisms at work in the world [1] and can be evolved forward to predict
and reason about objects’ dynamics mechanically and spatially (e.g., [2]). The extent to which
human intuitive physics in fact relies on something resembling a simulation engine, and in what
situations is the engine applied, are open questions subject to ongoing debate [3,4]. We will
take as a starting point that simulation provides a powerful mechanism for at least some intuitive
physical inferences, and present game physics engines as a candidate computational sub-
strate for those simulations.
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Figure 2. Experimental Findings and Computational Proposals. (A) Adults and children expect that a static
structure such as a wall will not move, and its motion is interpreted as self-motion, leading to needless correction and
imbalance [20]. (B) In a physics engine the resting body is in a sleep state to save on computation. Following a collision, the
body is woken up. (C) (i–iv) Young infants use motion, not continuation, cues to perceive connected objects behind an
occluder. Green and red marks indicate when infants perceive an occluded object as a unified body (adapted from [26]). (D)
Game engines distinguish between the visual shape and the related body of an object. The graphical shape is ultimately
what is rendered on the screen, using for example polygon meshes and textures. The physical body is used under-the-
hood for quickly determining overlap and applying forces, making use of bounding boxes and convex hulls, for example. (E)
When 10-month-old infants see a duck go behind an occluder and a truck come out, they do not expect the duck to remain
behind the occluder (i). This may be because the duck/truck body representations are similar (ii). (E) Young children have
separate expectations for solids and non-solid substances [46,47], predicting that non-cohesive substances will go
around solids, and through porous barriers, for example. Not all substances are the same. For example, sand (orange
substance, left) may accumulate in piles, while water (blue substance, right) spreads. A game engine can simulate non-
solid substances with different dynamic properties (such as viscosity) to predict different possible outcomes.
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Box 2. Learning Physics

The mental physics-engine hypothesis is agnostic about how the knowledge captured by this engine is acquired. Are
people innately equipped with a physics engine attuned to the dynamics of our 3D and roughly Newtonian world, with
the right priors for gravity, friction, mass, and so on? While it might be evolutionarily useful, such a fully specified innate
model is at odds with developmental findings showing that infants acquire many basic physical notions during the first
years of life [16,75]. How could something resembling a mental physics engine be learned during development, and to
what extent does the same mechanism continue to support learning of new physical concepts and relations later in life?

It is possible that young children have or acquire early in life the most basic categories of a physics engine – that the
world is parceled into objects, that the dynamics of objects and their interactions are governed by something resembling
forces – but still lack strong expectations about any of the specifics, such as the existence of particular properties, the
shape and structure of the forces, the form of motion constraints, the prior distributions of mass and friction, and so on.
Under this view, children's developing knowledge of physics may be driven by becoming more certain about these
underlying dynamic variables.

For example, consider the learning trajectory of infants regarding support events [16]. Infants seem to initially expect
objects with any contact to a supporting base to remain stationary. Infants gradually become more sensitive to whether
the contact is at the top of the support, then to the amount of contact, and finally to the shape of the object that
determines whether its center of mass is roughly over the supporting base (Figure I). This trajectory has been explained
as the acquisition of decision rules over perceptual variables (rules such as ‘if contact is less than mid-point, predict
falling’ [17]). However, the same trajectory could be explained as the growth of infants’ certainty concerning the
existence and strength of dynamic variables such as joints that could attach to and support the object, random
environmental forces, a global force such as gravity, and the bounding body of the object.

Joint broken!

(B)(A) (D)(C)

Figure I. Learning About Support. Predicted trajectories for different starting conditions and dynamic assumptions.
(A) Starting conditions shown to infants, adapted from [16]. (B) ‘Correct’ trajectories expected by infants from about 12.5
months of age onwards, and by a physics engine with correct assumptions and bounding bodies (broken). (C)
Representing bodies using their bounding box (broken) leads to the incorrect prediction that L-shaped objects will
be supported, as expected by infants younger than 12.5 months. (D) The expectation that there may be joints 'gluing'
objects together leads to the incorrect prediction that precarious objects on top of a support will stay put, and the
correct prediction that objects on the side will fall, in line with the expectations of 5-month-old infants.
Mental models and mental simulation processes in intuitive physics have often been seen as
qualitative in nature, with a mathematical basis that is fundamentally different from scientific
mechanics [5]. Recently, however, the notion of a mental physics simulator that supports
quantitative inferences has led to strong computational models for a wide range of intuitive
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Box 3. Limits of Mental Physics Engines

Early research on intuitive physics suggested that our reasoning about object motion fails to accord with Newtonian
principles, and is subject to surprising errors, even in simple motion-prediction tasks [76,77]. It was later shown that,
when using more-realistic displays and actions, our intuitions actually closely match Newtonian dynamics [78,79].
Similarly, earlier work was taken to show that humans use simple heuristics when making mass judgments from
dynamic collision events (e.g., [80–82]), but these findings can be subsumed by models based on noisy Newtonian
dynamics [10].

Even if the domain in which people can richly simulate physics in their minds turns out to be larger than some have
argued, this does not imply that mental simulation is the sole underlying representation for all dynamic reasoning. Some
dynamic tasks can be solved quickly through qualitative reasoning in the absence of any quantitative simulation [40], and
some dynamic tasks – such as those involving wheels and other spinning objects – are difficult for humans to simulate
(e.g., [54]). Even in inference tasks where physics engines can be useful for evaluating candidate hypotheses or
explanations, there remains the difficult and separate problem of generating the right hypotheses in the first place
[32,83,84]. For example, people can reasonably evaluate how well the existence and position of unseen attractors and
repellers explain the motion path of objects, but only if they are told this information explicitly. People have more difficulty
in generating the correct hypothesis for the existence and positions of attractors and repellers by themselves.
physical judgments, physical scene understanding, and counterfactual reasoning (e.g., [6–
11] and Box 1). These models combine advances in probabilistic reasoning in AI with the
exciting technological developments in physics engines that have taken computer animation
from block shapes to blockbuster movies and games. The video game industry in particular
has developed tools for building rich and immersive environments that must react convinc-
ingly and in real time to the open-ended actions of players exploring them from a first-person
perspective.

We believe that these same tools provide a first working hypothesis for the representational
contents of intuitive physics: the data structures that our minds use to represent the objects and
events that make up a scene, as well as the algorithms we use to simulate physical dynamics
over time.

There are several reasons why game physics engines may be useful representations for
cognitive scientists to explore. The first is that game physics engines are programmed by
humans, for humans. Their functionality may thus provide hypotheses for what passes as a
‘good enough’ approximation to real-world physics, as humans understand it. Nonetheless, we
expect there may be deeper analogs between the computational architecture of physics
engines in video games and the mental architecture that allows humans to grasp and predict
the immediate future of physical scenes, because both of these systems evolved under similar
design constraints and pressures: neither is required to capture physics exactly or perfectly;
both were designed to produce reasonable-looking dynamic approximations of complex
scenes on a human-relevant scale, in real time, with computational resources far too limited
to implement anything resembling a precise molecular simulation. Contrast this, for example,
with scientific physical simulations of galaxy formation, atomic systems, weather patterns, or
protein folding. Such simulations have been essential tools in scientific research but, in these
settings, simulations can draw on vast computational resources and take much longer than real
time; there is no reason to think that their fundamental representations parallel any concepts we
expect to be relevant for everyday human cognition.

Crucially, while game physics engines share some of the quantitative structure of Newtonian
mechanics or classical fluid mechanics, they also depart dramatically from these scientific
models, both in how they represent the world and in how they are used to reason about the
world. It is very unlikely that the human mind solves the equations of motion that fully describe a
complex dynamical scene, as physicists do when they compute trajectories over long time-
intervals, such as the orbits of the planets, or the arc of a cannonball. Game physics engines do
654 Trends in Cognitive Sciences, September 2017, Vol. 21, No. 9



not carry out these computations either. Instead, they use a combination of approximations to
Newtonian mechanics that are highly computationally efficient when run forward one step at a
time, hacks and shortcuts that have no scientific basis but produce plausible dynamics very
efficiently, and qualitative switches between different approximation schemes at salient points
in space and time [12]. Indeed, for both game engines and the brain’s simulations, the models
do not need to be accurate in any sense that physicists would recognize; they need only
produce results that look reasonable at the spatial scales that humans perceive and act on, and
predict well enough over a short time interval of a second or two. To be useful, they must make
these predictions fast – faster than real time. They must be flexible and handle a very large
number of situations, including novel ones. They must also run on low-power circuitry – a brain,
or a smart phone.

To give a high-level example of how physics-engine approximations work, and the types of
trade-offs they make, consider different ways we could simulate the relatively simple scene of
several billiard balls moving and colliding in a closed space (Figure 1A,B). One option is to create
a simulation that is veridical as possible, down to the molecular level. Such a simulation might
be the most physically accurate, but it is far too computation-intensive for real-time applica-
tions. Another option, pursued by many neural network models, is to treat the scene as a single
high-dimensional vector in some latent representational space (e.g., [13]), undergoing a
complex non-linear evolution, and attempt to directly predict the next state of this vector
given the current one and past statistical regularities.

A physics engine represents a middle way between these extremes: instead of 1026 particles,
or a single high-dimensional vector, the engine explicitly divides the world into a relatively small
number of individuated objects that occupy space, with properties that may be stable or
change with time (billiard ball, table, wall, mass, friction, position, and so on). This factorization
into objects, as in Newtonian mechanics, abstracts and simplifies the scene to enable efficient
computation. However, the actual computations in physics engines hack Newtonian mechan-
ics in many ways. For instance, nearly all physics engines separate object dynamics into free-
motion and collision-solving phases. Provided that the objects do not collide with other objects
or surfaces, they move roughly according to F = m.a, within constraints. A separate collision-
detection module detects when objects overlap, and switches their dynamics into a collision-
resolution mode. Often, this collision-detection module does not take into account the specifics
of the an object’s shape, and instead uses a simplifying bounding box to notice overlaps.
Furthermore, the simulation can usually assume that many entities in the scene (such as walls,
floors, or background objects) are not in motion, and thus require no moment-to-moment
computations to update their position.

In the remainder of this section we consider these and other ‘physics-engine hacks’ in more
detail, with a focus on how they parallel core phenomena in perception and cognition, and
especially how they provide insight into the object and event representations of young infants.

Objects and Events
Two foundational representational commitments of game physics engines are objects and
events. Objects are bounded chunks of matter in space, events are delimiting points in time and
the periods between them. For example, to render a scene of several balls colliding, for
example, a physics engine explicitly represents these balls as named entities with location
and velocity, size and shape, mass and elasticity, and so on. When the balls overlap in space,
this triggers a specific collision event in the physics engine, which alters the dynamics of the
objects (refer to section on Detecting and Resolving Collision). This may seem such an obvious
representation that one can well ask how it could possibly be otherwise, but recent work on
building artificial systems with a sense of intuitive physics has focused instead on representing a
Trends in Cognitive Sciences, September 2017, Vol. 21, No. 9 655



physical scene as a vector of pixels, without an explicit notion of objects or events (refer to [13]
and section on Intuitive Physics in AI and Machine Learning).

According to several proposals, infants from early in their development also see scenes as
being made up of objects and events (e.g., [14–17]). Infants group parts of a scene into holistic
entities based on their motion, and have physical expectations about these entities: they should
continue existing, not suddenly change direction, not interpenetrate, and so on. Infants are also
sensitive to subtle qualitative differences in the events that describe the motion of these objects,
distinguishing between collision, occlusion, stability, containment, and so on.

Static and Dynamic
A common way to save on computation time and memory is to classify entities into those that
actively participate in the simulation (dynamic or active), and those that do not (static or
passive).

Static entities often form the background to a scene, such as walls or the ground. Static
structures are not merely large-mass objects – they form a separate ontological category, often
with zero or undefined mass, for which forces and various other updates are not calculated.
Dynamic objects are not simply entities currently in motion, but are instead those with the
potential to be affected by forces. This basic distinction between static and dynamic could also
hold in mental physics engines, from early in development and onwards, thus explaining how
infants and adults come to have different expectations about the physics of static and dynamic
entities, such as about the likely behavior of balls versus walls.

This distinction is in keeping with various findings, among them the fact that extended surfaces
are used early on in navigation (while everyday objects are not), explained by the expectation
that such extended surfaces are stable and unlikely to move, and therefore reliably indicate
one's position [18,19]. This expectation of stability and immobility is also used for body
orientation, as shown by the shift in posture and loss of balance in both adults and young
children when perceiving a moving three-sided room ([20,21] and Figure 2A]. The viewers in
these experiments assume the walls of the room are static, and incorrectly infer from their
apparent motion that they themselves must be falling.

Beyond orientation and navigation, this distinction can explain some object groupings and
motion predictions, such as why 3-month-old infants expect heterogeneous objects to be
grouped and moved together regardless of discontinuities in color and shape, but do not group
those objects with the stage floor on which the objects stand. For example, infants who see a
hand lifting the top of an object made of two distinct parts expect the entire structure to rise
regardless of the discontinuity, but do not expect the floor to come with it [14]. They treat the
floor as an immovable, static background, whereas the object itself is dynamic.

Sleeping and Awake
Within the category of dynamic objects, physics engines treat objects at rest and objects in
motion differently. There is no need to calculate equations of motion for objects that are not in
motion. In addition, there is usually no need to re-render an object (i.e., re-draw fully its graphical
counterpart) if it has not moved since the last frame. Objects in a state of rest are labeled
‘sleeping’. A sleeping object wakes up if a body collides with it, or if one of its supports (another
object or joint) is moved or destroyed. An awake object is put to sleep if its velocity remains
below some threshold e over a period of simulation steps S.

For mental physics engines, the concept of a ‘sleeping’ object can also reduce cognitive load
on attention and computational resource allocation. In a typical scene, most (non-agent)
656 Trends in Cognitive Sciences, September 2017, Vol. 21, No. 9



entities are not moving at any given time, even though they can potentially be moved given the
right force application. The categorical distinction between sleeping and waking entities can
account for key findings in the psychology of causality. Consider a rolling billiard ball A hitting a
stationary ball B and sending it rolling. People often see this event as A causing B to move,
rather than B causing A to stop or slow down [22–24]. Infants respond to reversals of such
events as indicating a change in causal roles [25]. From a purely Newtonian physics perspec-
tive, A and B are on an equal footing. From a physics-engine perspective, however, the order of
events is as follows (Figure 2B):
(i) Awake body A moving towards sleeping body B.
(ii) Collision detected.
(iii) The status of object B changes to ‘awake’.
(iv) Collision resolved, new velocities assigned.
(v) Simulation resumes.
(vi) Optional: the new velocity if A is below threshold e. After several simulation steps S, the

engine sets the velocity of A to 0 and puts it to sleep.
Steps 2 and 3 indicate a change of state for A, and directly relate it to A contacting B. The
change of state for A, if it happens, occurs several simulation steps after the collision, and is not
directly related to the collision. This basic asymmetry in the state change of the physics engine
is in line with the apparent causal asymmetry.

The sleep/wake divide can shed light on findings showing piecemeal mechanical simulation
in adults [2]. When asked to predict the behavior of a mechanical system such as an
arrangement of gears or pulleys, adults often answer as if they mentally animate pieces
of the scene separately, propagating effects through a causal chain rather than simulating
the whole scene holistically. Such a causal propagation can be seen in a physics engine as
the effect of one moving object waking up the other objects it encounters through collision or
force.

Beyond questions of causality and changes of state, the sleep/wake divide is connected to the
greater degree of attention people pay to moving objects, and to the role played by motion in
the assignment of object boundaries. Presented with a stationary array of novel objects whose
boundaries are not clear, people who attempt to move these around will perceive two items that
move together as lying on the same object, whereas two items that are too heavy to move will
continue to have indeterminate status. These perceptions are shared by infants in the first
months of life [26,27], and even newborns [28], who use common states of motion – but not
common states of rest – as a cue for determining object grouping and boundaries (Figure 2C).
From a purely Newtonian perspective, a stationary center-occluded object is equally unitary as
a uniformly moving one: both have the same motion vector above and below the occluder. Not
so from a physics-engine perspective, where objects that are not in motion can be temporarily
omitted from the simulation. If, on top of predicting the motion of objects, a mental physics
engine is tasked with reconstructing object identities from perceptual data, it would save on
computation and memory to have as few moving items to track as possible. Two nearby
perceptual patches with identical velocity vectors would be more efficiently characterized as
one object.

Detecting and Resolving Collisions
All game and physics engines that move objects around must notice when those objects
interact, and adjust their motion appropriately. These computations are usually handled by a
specialized collision-detection module, although simulators use a variety of methods to detect
and solve collisions. To detect collisions, some simulators advance the simulation by a small
step and create a list of the overlapping bodies, while other simulators cast trajectories
geometrically into the future and check for intersections. To solve collisions, some simulators
Trends in Cognitive Sciences, September 2017, Vol. 21, No. 9 657



place springs between the colliding objects, while others simply dictate changes to the object
positions (‘pushing’ them apart) until the objects no longer intersect.

If mental physics engines exist, they will also need to detect and solve collisions. Because
collision detection is a specific and separate module in nearly all physics engines, we can
expect to find high sensitivity to collisions in humans, regardless of specific object identity.
Young infants are particularly sensitive to spatiotemporal boundaries in collision detection. They
expect solid objects not to interpenetrate [15], reason about the location, shape and com-
pressibility of an object behind a rotating screen to predict its collision with the screen [29],
anticipate that the size of a colliding object will affect how far an object is displaced [30], and
expect collisions with inert objects to result by way of direct contact [31].

The mental physics-engine proposal posits that humans are not perfect in their dynamic
simulations for several reasons, including perceptual uncertainty (e.g., where is the object),
property uncertainty (e.g., what is the mass of the object) and dynamic uncertainty (e.g., the
momentum of the object; the roughness of the surface it moves on). A noiseless simulation with
high fidelity fails to capture people's intuitions in physical reasoning tasks [6,32]. If collision
detection is a separate module within the mental physics engine, it likely acts as an independent
source of uncertainty. In line with this prediction, recent work suggests that collisions inde-
pendently contribute to the noise in a mental simulation [8].

Body and Shape
Physics engines have separate data structures for the visual representation of an entity (shape)
and the physical representation of that entity (body). The shape of an entity is ultimately
rendered and displayed graphically, and it can be made of polygon meshes, subdivision
surfaces, and so on. The body holds physical properties such as mass, position, and friction,
and an approximation to its visual shape for the purposes of calculating dynamics and collision
detection. To appreciate the difference between body and shape, think of two rubber ducks
colliding (as in Figure 2E). As a graphical representation, the ducks can be captured with high
fidelity by means of a polygon mesh and textures, but, for the purposes of quickly checking and
resolving overlaps, other representations such as convex hulls, bounding boxes, or other
approximate shapes are more appropriate.

When recognizing and categorizing an object people may call on the more detailed shape
representation, but when simulating an object moving forward in time, people might only
roughly approximate its shape by using simpler meshes or solids. These separate represen-
tations may map onto the separate visual systems proposed in [33,34], with the vision-for-
perception pathway being similar to the shape representation, and the vision-for-action
pathway being similar to the body representation. In particular, the distinction between bodies
and shapes illuminates a set of findings in cognitive development showing that infants below 12
months do not use detailed shape representations to track object identity (e.g., [35,36]).

In the seminal finding, infants see a toy duck and a toy truck appear and disappear, in
sequence, from behind the two sides of a single wide occluder. The occluder is then removed
to reveal either one or two objects (Figure 2E). One-year-old infants are surprised by the
absence of the second object, but younger infants are not. Various controls establish that this
failure is not explained by limitations to attention, memory, or general capacities to track objects
over occlusion. For example, four-month-old infants are surprised in the above situation if the
two distinct objects had moved into view from behind two narrow occluders that were
separated by a gap [37]. A great deal of research has elaborated on these original findings,
although no single account currently unites all the findings ([38] for literature review and a
physics-based account).
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When objects such as ducks and trucks are fully visible, infants at 10 months can readily
distinguish them perceptually. For tracking, however, infants at this age might rely on the body-
representation of an object, using similar shape approximations for toy ducks, trucks and other
comparable objects (Figure 2E). Such a body-representation proposal is in line with the
‘structural layer’ proposal [38]. This proposal further predicts that alternating between two
shapes with wholly different bodies (such as duck to long spiky snake), or different physical
categories (such as rigid body to liquid or soft-body), would lead to different tracking expecta-
tions than the duck–truck experiment. In accordance with this last prediction, recent work [39]
has shown that young children under memory load notice transitions from rigid to non-rigid
states (toy duck to goo) but not similar-shaped rigid transitions (toy car to shoe).

Constraints
A physics simulation will often use constraints to restrict the movement of bodies without
explicitly calculating forces of motion. Consider a two-bodied pulley system with unequal
weights at opposite ends: a physics engine can avoid computing the exact tension on the rope
necessary to simulate a force that pulls one mass up while the other goes down. Instead, the
engine can enforce a constraint such as ‘to the degree that one object moves up, the other
moves down’. Common constraints include keeping objects at a particular relative distance
(rod constraint), limiting their relative rotation (hinge constraint), constricting objects to move
along particular dimensions (planar constraint), or about a particular rotation axis (axle con-
straints). A common use for constraints is as simple object-to-object attachments, which ‘glue’
them together. Such ‘joints’ do not cause the two objects to form a single entity, and the
attachment can be broken if the engine detects a threshold of stress or torque has been passed
(see Box 2 Figure IC for the hypothetical use of such a joint in explaining infant reasoning about
support). Constraints can also be concatenated to create items such as vehicle wheels, pulleys,
and chains [12]. Such constraints offer a way of integrating proposals from the field of
‘qualitative physics’ [40] within quantitative mental simulations.

Hard Things, Soft Things, and Stuff
Most physics engines classify entities based on their ability to deform, distinguishing between
rigid bodies, soft bodies, and fluids. Each category is handled differently and requires a different
amount of resources. Fluids and soft bodies are harder to simulate than rigid bodies, and they
take up more computation. From early in development, humans also seem to have different
expectations about substances compared to objects, and about rigid objects compared to
flexible ones [41]. For example, infants do not track piles of sand and flexible compounds in the
same way as rigid objects of otherwise similar appearance [42], although they are able to detect
changes to the volume of a liquid or non-solid substance [43,44].

Infants also expect liquids to pour through holes in barriers, and to split and come together,
whereas rigid objects should not [45,46]. Infants extend some of these expectations to non-
liquid, non-solid substances such as sand [47]. In many situations, however, infants fail to track
non-solid substances over occlusion [42]. Again, physics engines can provide an underlying
rationale for why infants find simple tracking of non-rigid objects to be more difficult – because
of the resource demands of simulating the movements of liquids and soft bodies.

Physics engines can also provide a computational footing when examining physical concepts
within the categories of solids and non-solid substances. For example, developmental
researchers have asked whether infants treat sand, water, and honey as entirely separate
concepts, as distinct sub-categories of the non-solid substance concept, or as points in a
single space of possible non-solid substances varying in their properties [47]? Physics engines
can use systems of particles to simulate the behavior of all these non-solid substances, by
varying the dynamic properties and interaction forces of the particles (Figure 2F), and in this
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sense they implement a single overarching space of possible non-solid substances. However,
they can also use different approximations to maximize the efficiency and quality of their
simulations for different types of substances (and different physics engines can simulate fluids
using different approximations); in this sense, they suggest it may be useful to represent distinct
subtypes of non-solid substances. In addition, many useful expectations about the behaviors of
rigid solids, soft solids, and non-solid substances may emerge from a physics-engine repre-
sentation without being explicit. For example, to know that a liquid will form a large puddle when
poured from two nearby containers, whereas sand will form two piles (Figure 2F), a physics
engine does not need to explicitly contain a ‘principle of accumulation’ that is specific to the
sand concept [48]. Instead, the engine simply needs to run a simulation forward, and examine
the result. Such a fluid simulation may also explain adult proficiency in predicting some fluid
dynamic tasks [49].

By considering physics-engine object classes, we can also propose new mental physics
categories to examine in infancy. For example, ‘cloth’, in the sense of an open mesh that
can drape other objects, is particularly difficult to simulate, but abounds in everyday human
environments. Cloth is a separate category in most physics engines that are equipped to
simulate it, distinct from compressible bodies and fluids. Other entities include fog and smoke,
which share some characteristics with fluids because they can pass through some barriers,
compress, and split apart, but are not as cohesive as liquids. Similar considerations apply for
more 1D entities such as strings, bands, cords, and hair.

Containment
Our concept list so far has been one-directional, from physics-engine software to possible
mental concepts. However, some categories uncovered by cognitive scientists may be useful
for engineers and software developers. As an example, the notion of containment appears
relatively early in human development [50,51]. This category is distinct from the visually similar
category of occlusion [52]. In both occlusion and containment events a visible object is visually
overtaken by another object. However, if the second object is moved, we expect a contained
object to go with it, and an occluded object to stay put. Even young infants show these
expectations, and seem to further distinguish between loose-fitting containment events and
tight-fitting containment events.

If a ball is placed in a box and the box is moved, it may not be worth the computational cost to
simulate the motion of the ball inside the box. It is sufficient to maintain a simple containment
relation, such that the position of the ball is linked and updated with the position of the box.
Such a work-around can potentially be of use for speeding up physics-engine software.

Physical Illusions
Physical illusions refer to persistent mistaken perceptions in the domain of dynamic reasoning
that clash with our higher-level beliefs about the ground truth. Similarly to visual illusions,
physics illusions offer a window into the simplified assumptions made by the computational
processes that underlie perception. In particular, it is possible to explain at least some of these
illusions by referring to the algorithms and assumptions of a physics engine.

As a first example, consider the tall tower shown in the red box of Figure IB in Box 1. Most
participants agree that this tower is unstable and likely to fall down, whereas in fact it is stable.
Even when people accept as a fact that such formations are stable, they may still ‘feel’ as
though they should collapse imminently. Such intuitions are the basis of an art form known as
‘rock balancing’ (Figure 3A). These intuitions can be explained by the uncertainty involved in the
reconstruction and prediction process of a physics engine [6]. That is, the reconstruction has
some degree of uncertainty over the exact position and properties of the objects in the scene.
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(A) (B)

(C)

Figure 3. Examples of Physical illusions. (A) Rock balancing creates precarious-looking stable structures. (B) Balance
toys are surprisingly supported. (C) Roly-poly toys seem to lift themselves back up.
This noise is enough to make the physics engine predict that a particular stable configuration is
unstable, in line with our intuitions.

Next, consider stability illusions that underpin popular children's toys, such as the balancing
bird shown in Figure 3B and the roly-poly toy in Figure 3C. We expect the bird to tip over, but it
stays balanced [6,53]. We expect the roly-poly to stay tipped over, but it springs back up. When
accurately recreated in a physics engine, such objects behave in line with their real world
counterparts. However, if we assume that a physics engine creates a simplifying bounding box
or convex hull around the shape of a object (see the section on Body and Shape, above), and
makes the simplifying assumption that the density of the box/hull is uniformly distributed, then
the objects behave in line with incorrect psychological expectations. For the roly-poly, the
center-of-mass is incorrectly located away from the bottom, causing the expectation that it will
stay lying down. For the balancing bird, the center of mass is incorrectly located further away
from the tip, causing the expectation that it will tip over. Other physics-related illusions
discussed as possibly originating from simplifying physics-engine assumptions are the size–
weight illusion [11] and the expectation that a wheel rim will roll down an inclined plane at the
same speed as a disk [6,54].

Intuitive Physics in AI and Machine Learning
The need for common-sense reasoning about physical systems as a building-block of intelli-
gence has a long history in AI (e.g., [5,55,56]). In part, this history stresses the need to define a
dynamic problem in qualitative terms – people know that water put in a heating kettle will boil
over time, and that pouring too much water in might cause the kettle to overflow, even if they do
not know exactly how and when this boiling and overflow will happen. Similarly, the desired AI
must reason from qualitative dynamics and derivatives.

More recently, with the resurgence of artificial neural networks and connectionist architectures
across many areas of machine learning [57], there has been a great deal of interest in trying to
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capture dynamic reasoning with bottom-up approaches that map directly from physical
observations to motion prediction or physical judgments. As an example, consider how the
Facebook PhysNet architecture tries to capture tower stability judgments [58]. This feedfoward
network was provided with many thousands of still images of block towers, which were labeled
according to those that did or did not fall under gravity (similar to [6]). PhysNet was able to
achieve super-human performance in judging the stability of new towers. This result may be
useful for limited AI settings, but it belies that fact that the network does not generalize well even
to very similar scenes (e.g., in judging towers composed of more blocks than the training set),
nor does it display asymmetries shown by both humans and physics-engine based models
[59]. Other networks have been trained to predict the effects of forces from still images [60,61],
and as part of an unsupervised action-guiding predictor of pixel motion [62,63] and physical
properties [64].

While such networks can achieve success within their domain of training, and may provide a
step towards artificial systems with common-sense reasoning, they nevertheless currently lack
key aspects of human reasoning that would allow them to generalize flexibly across many
different scenarios [65]. Networks such as PhysNet are not reasoning about blocks, mass,
friction, and gravity; they are reasoning about pixels – abstract patterns in how pixels change
over time, but pixels nevertheless. Unlike representations based on explicit objects, relations,
and events, these image-based representations may not easily extend what has been learned
to situations with more blocks, or with objects of different sizes and shapes, or the many
different inferences human can make, such as predicting which way the blocks will fall, or how
many will end up on the floor, reasoning about which block made another fall over, or
understanding how their dynamics might differ if some objects were heavier, smoother, or
bouncier. This certainly does not mean neural networks have no role to play in intuitive physics.
Several groups have recently explored productive ways to combine deep networks with
physics-engine-based models, such as using physics engines for explicitly simulating the
dynamics of a scene, but using vision algorithms based on deep networks as a fast bot-
tom-up initialization of the state of the simulation (e.g., [66]) (Figure 4], or using neural networks
to learn the dynamics of forces in a physics-engine-like model that explicitly factorizes into
representations of individual objects, their properties and interactions [67–69].

A Physics Engine in the Brain?
What are the neural substrates of the mental physics engine? Do they form a specific sub-
module in cortical processing, or are they part of a broader network? To date few studies
have looked directly at the neural signatures of intuitive physical perception and prediction,
and research has instead focused more on the neural representation of explicit textbook
physical concepts such as momentum [70], or the brain mechanisms involved in parsing
mechanical reasoning puzzles and educational videos of textbook concepts [71]. One recent
study explored the neural basis of more-perceptual physical inferences, similar to those used
in studies of infants, with a suite of visual scene understanding tasks such as predicting the
stability of towers, or predicting the immediate future of simple physical interactions in 2D
displays. These tasks were found to preferentially engage a brain network of parietal and
premotor regions, apparently overlapping with regions related to action planning and tool use
[72]. This finding is in line with previous work showing that visual information about the weight
of objects, a key dynamical variable in intuitive physics and game-engine simulations, can
lead to activation in premotor cortex [73]. An additional experiment in [72] found that the
amount of physical content in a video during passive viewing predicts the activation of the
brain regions identified as candidate physics-related areas. These results suggest that brain
regions relevant for processing intuitive physical inferences are involved in both the percep-
tion of scenes and objects, as well as in action planning and understanding. Nonetheless,
these experiments focused on only a small set of physical inferences, specifically about rigid
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Outstanding Questions
How does a physics-engine represen-
tation develop, and what are its initial
components? It seems unlikely that a
full 3D Newtonian-like engine is pres-
ent from birth (Box 2), but are funda-
mental concepts such as mass, and
force present early on, or are these
bootstrapped from simpler
representations?

In what sense do the brain regions that
preferentially activate during intuitive
physical inference correspond to a
mental physics engine? How do their
computations relate to those involved
in action planning and action predic-
tion, visual processing of object prop-
erties, and cross-modal perception?

Are there individual differences in the
general population with respect to the
mental physics engine, in the same
way that spatial-reasoning and face-
recognition abilities vary across peo-
ple? What would these differences
correspond to in terms of mental archi-
tecture? Are there physics-engine defi-
ciencies or agnosias?

What is the scope of game-engine
style simulations in intuitive physical
reasoning? For what tasks is it
engaged, and in what other ways do
we reason about dynamics, such
as qualitative or analogical reasoning
(Box 3)?

What is the most valuable way to incor-
porate game-engine simulations into
artificial intelligence systems for com-
mon-sense reasoning? Should a phys-
ics engine be wired in, or could it be
discovered by general-purpose learn-
ing or evolutionary algorithms? Should
it be used only to train pattern recog-
nition modules in an AI, or actively
engaged online during prediction and
planning?

Physical object models

Likelihood func�on

Mass, Fric�on, 3D Shape

Generate Ini�alize
simula�on

Simulate
trajectories

Observe
trajectories

Observe
objects

Compare with
observa�on

objects

Figure 4. Inferring Physical Para-
meters. From top left: the Galileo system
assumes a probability distribution over
physical properties such as mass, and
shape. In the forward direction, the sys-
tem generates objects in space, and
simulates their trajectory using a game
engine. The simulated trajectory is com-
pared to a real trajectory of objects in
motion (bottom left), resulting in a likeli-
hood for the simulated trajectory. The
physical parameters are adjusted to max-
imize this likelihood and better match
observation. In parallel, a neural network
is trained to predict the physical proper-
ties of objects, given their visual appear-
ance (right). The prediction of the network
is used as the initial ‘guess’ for the phy-
sical parameters of the game engine,
speeding up inference ([66] for full details).
bodies, and there are still many open questions regarding the neural realization of a mental
physics engine.

Concluding Remarks
People do more than classify objects: They see bodies with physical properties, interacting
through a play of dynamic forces against a background of inert extended surfaces. Things can
be heavy, firm, billowing, fragile, cushy, bouncy. They can fall and smash and blow and drag
and flit and anchor. Stuff can ooze and splash and dribble and billow. Because the human mind
must overcome resource challenges when constructing and reconstructing dynamic scenes,
we might expect a convergent evolution of concepts between faculties of the mind and
simulation software. Taking the mental physics simulation proposal seriously means we should
examine the concepts and workarounds that clever people working on game engines develop
and use to make their models work efficiently – concepts whose effectiveness depends both on
the nature of the physical world, and on human psychology, but that were developed
independently of findings or theories in cognitive psychology (see Outstanding Questions).
In particular, we should look for those concepts that are shared across many physics engines,
regardless of specific implementation details. We have examined several such prominent
concepts and their design principles, finding new points of inspiration, new perspectives on
old phenomena in psychology, and new hypotheses for how intuitive physics might work in the
brain and be built into intelligent machines.
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