Children's language comprehension: incremental, interactive and abstract

Michigan State University March 2014

Jesse Snedeker Harvard University

How does language comprehension develop?

Adult language comprehension

- 1. Builds a series of linked representations
- 2. Interpretation is incremental
 - cascaded processing
- 3. Processes at each level are interactive
 - influenced by multiple other levels
 - both linguistic and nonlinguistic

Adult language comprehension

- 1. Builds a series of linked representations
- 2. Interpretation is incremental
 - cascaded processing
- 3. Processes at each level are interactive
 - influenced by multiple other levels
 - both linguistic and nonlinguistic

Comprehension builds series representations

Adult language comprehension

- 1. Builds a series of linked representations
- 2. Interpretation is incremental
 - cascaded processing
- 3. Processes at each level are interactive
 - influenced by multiple other levels
 - both linguistic and nonlinguistic

Adult language comprehension

- 1. Builds a series of linked representations
- 2. Interpretation is incremental– cascaded processing
- 3. Processes at each level are interactive
 - influenced by multiple other levels
 - both linguistic and nonlinguistic

Interactive Processing

Language interacts with other cognitive systems

How does this system develop?

Preschooler's online comprehension is

- 1. Incremental
 - Phono-semantic priming, negation
- 2. Interactive
 - Syntactic ambiguity resolution
- 3. Builds abstract representations
 - Structural Priming

1. Incremental Processing

Miseon Lee Hanyang University

Phono-semantic priming

"Pick up the logs"

Semantic priming via phonological cohort member

Marslen-Wilson & Zwisterlood, 1989; Yee & Sedivy, 2006

"Pick up the logs"

"Pick up the logs"

" Pick up the logs

Phono-semantic priming in 5 year olds

Children make incorrect actions as well

Incrementality at higher level....

- Lexical storage could support stable associations
 - Facilitating incremental processing
- Are <u>higher-level</u> semantic representations constructed incrementally?
- Negation as test case
 - Reverses the usual pattern of association
- Adult negation processing
 - Negatives often initially treated as affirmatives in weak contexts¹
 - But not in rich discourse contexts²

Kaup et al., 2007; Fischler et al., 1983; Kunios & Holcomb, 1992; Ludke et al., 2008.
Nieuwland & Kuperberg, 2008; Tian, Breheny & Ferguson, 2010.

Negative

Affirmative

Prediction: associative processing

Prediction: incremental semantics

Adults are incremental

4 year olds are incremental but slower M=4;7

3 year olds are incremental but noisier

Incrementality

- Lexical processing is cascaded in children
- By 3 children do incremental semantic interpretation
- Eye-movements reflect processing at several levels (lexical and combinatorial)
Interactive Processing

Resolution of structural ambiguity in children

John Trueswell

Sylvia Yuan

Carissa Shafto

Amanda Worek

Interactive Processing

NP-attachment (modifier)

Alice attacked the paper with the flawed data

VP-attachment (instrument)

Alice attacked the paper with the flawed data

Information for ambiguity resolution

- Adults use:
 - Lexical: verb information
 - Pragmatic: need to resolve referential ambiguity
 - Prosodic: phrase boundaries
 - Conceptual: plausibility of interpretation
- What cues do preschoolers use (4;0-6;0)?

Paradigm

"Feel the frog with the feather"

Snedeker & Trueswell, 2004; Snedeker & Yuan, 2008; Snedeker, Shafto & Worek, in prep

What information do children use?

(Snedeker & Trueswell, 2004)

- Different verbs \rightarrow different interpretations
 - <u>Choose</u> the pig with the fan (modifier)
 - *<u>Hit</u> the pig with the fan* (instrument)
- Referential ambiguity does not affect parsing
 - Two pigs vs. one pig

Do children use prosody in parsing? (Snedeker & Yuan, 2008)

- Instrument Prosody
 You can feel the frawwg....
 with the feather
- Modifier Prosody

You can feeeel....

....the frog-with-the-feather

Blocked Design

children's actions affected by prosody but only for the first block of trials

Snedeker & Yuan, 2008

b. Block 1 Instrument Prosody

Snedeker & Yuan, 2008

Conclusion: Children's parsing is interactive

- Use verb information
- Use prosodic cues

Why do children fail to use referential ambiguity?

Perhaps they are poor at rapid use of top-down information....

Plausibility, another top-down constraint

- Plausibility: how likely is a given interpretation given the affordances of the objects?
- Low instrument plausibility:

Tickle the bear with the mirror

• High instrument plausibility:

Tickle the bear with the paintbrush

Snedeker, Shafto & Worek, in prep

Eye movement data

Adults, Plausibility Effect

In adults, plausibility effects emerge early and dominate parsing

Snedeker, Shafto & Worek, in prep

Eye movement data

Adults, Plausibility Effect

Five-Year Olds, Plausibility Effect

In children, lexical effects emerge early and dominate parsing

Snedeker, Shafto & Worek, in prep

prosodic

Preschooler's online comprehension is

- 1. Incremental
 - Phono-semantic priming, negation
- 2. Interactive
 - Syntactic ambiguity resolution
- 3. Builds abstract representations
 - Structural Priming

What representations guide children's comprehension?

Structural Priming

Malathi Thothathiri George Washington University

What representations lurk behind children's utterances?

Adult-like abstract structures?

What representations lurk behind children's utterances?

Give (me) (a cookie) $\stackrel{\uparrow}{-}$ GIVE GIVEE GIVEN Give me a cookie!

Item-Based Frames? (Tomasello, 1992)

How do we tell the difference?

- Do children generalize knowledge to novel verbs?
 - Production: 3 yo often don't
 - Comprehension: 2 yo clearly do
- Issues of interpretation
 - Does the child treat novel verbs as novel (vs. translation)?
 - Are these representations invoked for known verbs?

• Datives: Verbs of transfer (give, show).

- Dative alternation
 - Double-Object Dative (DO)
 Give the boy the truck: Recipient-First
 - Prepositional Dative (PO)
 Give the truck to the boy: Theme-First

The woman is giving the man a book.

The woman is giving a book to the man.

a book to the man.

man a book.

7

man a book.

Priming and Representation

• Item-Based Frames \rightarrow

Within-verb priming only

Abstract Generalizations →
 Within-verb + Across-verb priming

Comparison: 4 year olds and 3 year olds (M=4;0, M=3;1)

Design

Prime: Pass the lion the ball or Pass the ball to the lion

Target: Pass the cowthe bookorPass the coucouch to the dog

Double Object Primes 4 year olds

Time from Noun Onset (in milliseconds)

Prepositional Object Primes (4 year olds)

Time from Noun Onset (in milliseconds)

Structural priming present at 4 and 3

Thothathiri & Snedeker, 2008a

Children construct abstract representations during comprehension....

For parallel production findings: Bencini & Valian 2008; Rowland et al., 2012

But what are the primed representations?

1. Surface syntax?

2. Syntax-semantics mappings?

Adults: Bock & Loebell, 1990; Bock et al., 1992; Chang, Bock, & Goldberg, 2003; Griffin & Weinstein-Tull, 2003

Confounded in dative alternation

-different semantic mappings

- Pass the cup to the lion \rightarrow theme + recipient
- Pass the lion the cup \rightarrow recipient + theme
- -different syntactic forms
 - Pass the cup to the lion \rightarrow V + NP + PP
 - Pass the lion the cup \rightarrow V + NP+ NP

But not in locative alternation

-different semantic mappings

- Load the hay onto the truck \rightarrow theme + location
- Load the truck with the hay \rightarrow location + theme
- single syntactic form
 - Load the hay onto the truck \rightarrow V + NP + PP
 - Load the truck with the hay \rightarrow V + NP + PP

Locative-to-Dative Predictions

- If surface syntax is primed
 - Both locatives should prime PO datives (both have NP+PP structure)
- If semantic mappings are primed
 - Theme-first locative will prime PO dative (theme first)
 - Location-first locative will prime DO dative (recipients and locations are both goals)

Dative priming in 4 yr olds

Comprehension priming depends on thematic mappings

Young children have abstract structural representations

Give me

a break!

Priming persists across different tasks

Paradigm primes syntaxsemantics mappings The critical features of adult language processing are in place by 3 years of age

- 1. Incremental
 - Phono-semantic priming, negation
- 2. Interactive
 - Syntactic ambiguity resolution
- 3. Builds abstract representations
 - Structural Priming

But young children differ from adults...

- Poor use of top-down cues
 - Referential context, plausibility
 - Due to slower processing speed? (ala Dell, 1986)
 - Less predictive and more reactive processing?
- Failure to override incorrect analyses
 - Phonosemantic errors, perseveration prosody
 - Immature executive functions? (Novick, Kan, Trueswell, Thompson-Schill, 2009; January et al., 2009; Mazuka, et al., 2009)
 - Limited experience?

New Questions

- Using the tools to study disorders
 - Prosody in autism
 - Top-down cues schizophrenia
- Different languages, different cues
 - Comprehension of case marking in Turkish

How do children with autism interpret prosodic accents?

Eun Kyung Lee

Becky Nappa

Communicative deficits in autism

Autism with, and without, language impairment

Kjelgaard & Tager-Flusberg (2001)

Communicative deficits in autism

Prosody affects syntactic analysis (actions)

Typically-developing Children Children with Autism 8-17 years (block 1) 8-17 years (block 1) 1 1 Instrument Prosody 0,9 ent Actions Modifier Prosody 0.8 0.7 ofInstrum 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0 0 Typically Developing Autism

Eye movements demonstrate rapid use of prosody

Joshua Diehl Notre Dame

Diehl, Friedberg, Paul & Snedeker (under review) Typically-developing children do not perseverate but children with ASD do (until 13)

Children with Autism

- A: How was your parents' visit?
- B: OK.My dad bought a BB gun for Oscar.

What should A say next?

- A: How was your parents' visit?
- B: OK.

My dad bought a BB gun for ***Oscar***.

But <u>he's</u> only six! Was <u>his brother</u> jealous?

- A: How was your parents' visit?
- B: OK.

My dad bought a ***BB gun*** for Oscar.

Why did he buy <u>that</u>? What are you going to do with <u>it</u>?

- A: How was your parents' visit?
- B: OK.
 - My *dad* bought a BB gun for Oscar.

How is <u>he</u> doing? What did your <u>mom</u> say?

• Hypothesis 1: accent signal new referent

- Explains some cases
 - "Put the candle on the square. Put the CANDY/candle...."
- But not others

"Click on the orange house. Now click on the RED house"

- Hypothesis 2: accent invokes a contrast set (Rooth, 1992)
 - Accent marks a variable
 - Replace variable with alternate values
 - To get set of alternatives under consideration

"Put the candle on the square. Now..."

Typical kids use accent as cue to novelty

Nappa & Snedeker (in prep); see also Arnold (2008)

Kids with ASD do too

Nappa & Snedeker (in prep)

"Click on the yellow house. Now..."

Typical kids use accent to identify contrast

Nappa & Snedeker (in prep); see also Ito et al. (2011)

Kids with ASD have the opposite response!

Nappa & Snedeker (in prep)

Thank you!

- National Science Foundation (0623945 & 0921012), Simons Foundation SFARI, Ellison Foundation
- Marvelous Lab Techs: Sylvia Yuan, Carissa Shafto, Amanda Worek, Beth Casserly, Carlyn Friedberg, Kate McCurdy, Noemi Hahn & Tracy Brookhyser